Dillon Delivers

Man, you can’t believe anything those guys say. First, they say it will be 2-3 weeks turnaround. They received my press on April 4 and I got FedEx notification that it was shipped back on April 7. THEN, FedEx says it will arrive on the 12th, but I had it on the 11th. How am I supposed to complain now?!?

If you look really close, you can see the color difference on the replacement crank and links. The frame has some slight yellowing on it, making it ever so slightly greenish.

There was a list of the parts replaced, including the clearly labeled primer shield and many small bits.

Before I reinstalled my press, I cleaned up the borrowed press within an inch of it’s life.

Before:

After:

Swapping the presses out was largely trivial; afterall, I’ve done it a few times now.

I added one accessory that I had ordered before the old press broke, a JW Systems Primer Track. This is basically just a replacement primer track bearing (which is a steel plate that sits under the primer slide) but it has a ball bearing roller added to help stabilize the primer slide.

As expected, I did not have to adjust anything on the top end to begin loading again. It just works, ya know.

I had the afternoon off last Friday and one of the things I tackled with that free time was to disassemble a pretty good sized bin of loading errors. They were mostly 40S&W and a lot of them predate the Dillon press, and thus most of them were primer issues from the Lee Press. I used a Hornady collett puller for most of them. That is by far the quickest way to pull a lot of bullets. Once adjusted for what you are pulling and getting into the groove, it’s about 5 seconds per cartridge.

Some of the primers were crushed into the pockets crossways and thus would not slide into the shell holder for the collett puller, so I had to use the intertia puller. Happily only a dozen or so needed this special care.

I pulled a few 155’s, a few 165’s and a bunch of 180’s.

The scrap brass bucket grew, too.

Here’s a couple hundred grains of TitePowerWinGroupPistol231.

Between the damaged brass and the damaged bullets, I had roughly what was needed for about 150 fresh cartridges. 🙂

While I had the interia puller in hand, I tried once again to pull one of the polymer bullets from the Inceptor lead free ammo and much to my surprise, it worked this time! I didn’t count, but it was about 50 strikes of the puller against the end of a 2×4 in the framework of my workbench. The previous unsuccessful attempt was struck against the concrete floor. Maybe the deadblow effect worked better than the rigid bounceback.

As I plan to shoot this ammo in the upcoming Silver Dollar Championship, I think I will keep this bullet or see if I can pull a couple others to include with my chrono samples. I have already spoken with the Match Director about the possible difficulties in pulling a bullet for the test and he said to bring it on!

Break Me Off A Piece Of That….

Last week, I’m crankin’ out some 40S&W, minding my own business when suddenly…..

It was sudden, but not violent. No snap, no pop. The handle just twisted a little weird. My first though was that the nut had worked loose, but I put a little pressure on it to test that and there is was, swinging in the wind by the handle.

I contacted Dillon about the replacement part, which even if I had to purchase it would only be $40. Of course, they intended to replace it under warranty. The only question was which version I had. One connects with E-clips, which you can see in that picture above. The other has locknuts.

While I had him on the line, I asked about their (legendary) refurbishment service. It’s only $68 to send them the whole press and they will repair and update everything on it, with about a 3 week turnaround. I’m in!

During the week, I removed it from the strong mount, removed the bits that they didn’t need for the work and boxed it up. It actually shipped on Thursday.

Meanwhile, a friend has a spare RL550 that needs a little work of its own. I arranged to borrow it in exchange for the work it needs. He learned the hard way that you can’t keep your reloader in the same enclosed space with pool chemicals.

The rust on the main shaft was enough to prevent it from operating. I used carburetor cleaner and steel wool to remove most of the surface rust.

I put it in the ultrasonic.

I love the way the muck flows off the parts.

Unfortunately, I was in a bit of a rush from this point forward and did not take any more pictures of the progress until it was finished. Really, it was just more cleaning except that there was still some dimensional enlargement from the rust on the end of the shaft. I used a fine file to gently draw file the part, being very careful to avoid causing any flat spots.

I put it all back together, with my handle, dies and shell plate.

I loaded 4 rounds just to test it out and it’s ready to go!

When I get my own press back from Dillon, I’ll just swap it around and return this one better than when I got it!

A Practical Application of the Conservation of Momentum

There are two main reasons to hand load your own ammunition. Most people approach reloading for reasons of economy. All situations being otherwise equal, reloaded ammo designed around cost tends to run about half of what commercial ammo might cost. There are firms selling commercially remanufactured ammunition for close to what you can load your own for, particularly if you watch for sales and/or free shipping is offered, so if you are reloading for economy only, reloading may not actually be your best option. After all, for $600+ investment in a press, accessories and reloading components makes that first box of ammo run at least $12 a round. It gets much better from there, though.

The other, perhaps even more compelling, reason is to customize ammunition performance. Action shooters benefit from controlled recoil for faster followup shots and consistency. While economy *is* a factor, it is custom performance that drives my reloading/handloading efforts.

There are revolvers and other semiautomatic cartridges in use, but the majority of action shooting competition is done with semiautomatic pistols in 9mm, 40S&W or 45 Auto. The focus of this blog article is about the effects of customizing recoil in semiautomatics for the competitive shooter.

There are energies released and absorbed throughout the operation of a semiautomatic pistol (or just ‘pistol’ from here on). One could go completely crazy plotting them all. The displacement of a 1911 in reaction to the swinging hammer would be mathematically predictable and physically measurable. It would likely be buried in the noise, but it could be accounted for. Indeed, sniper rifle design accounts for dampening or reacting such forces because in that application, it can matter.

The forces that matter most to action shooting reloaders are the actions and equal but opposite reactions that are initiated by firing the cartridge. These are also the big forces, big enough that we can largely ignore everything else.

Power Factor is a simple measurement that action shooting sanctioning bodies use to ensure their competitors meet a minimum expected level of power. Power Factor (PF) is calculated simply by multiplying the bullet weight in grains by it’s velocity in feet per second, dividing by 1000 then discarding the digits to the right of the decimal. For example, a 165g bullet going 900 fps would be 165 x 900 = 148,500. Dividing by 1000 and discarding the digits to the right of the decimal is practically the same as just dropping the comma and those digits, PF = 148.

Common minimum power factors are 125 and 165. For example, in IDPA, all semiautomatic divisions except CDP is 125 and CDP is 165. In USPSA, PF is a scoring modifier in some divisions, like a golf handicap. Shooting major PF (165 or more) reduces the penalty of non-A zone hits.

Power factor, or momentum, is a simple and linear method that is adequate for comparing different ammo between different shooters. Recoil is a more personal effect, felt by only the shooter. Less recoil generally means an easier to control firearm. Ideally, you have the least possible recoil while meeting the minimum required power factor.

Recoil is really the reactive force to the bullet’s acceleration. The easiest way to measure that is by the velocity of the bullet, presuming it has lost a negligible amount of energy between the muzzle and the measuring field. Scientifically, they are different things. Practically, they are close enough.

Momentum is derived from a fixed mass moving at a fixed velocity. Muzzle energy is derived from the acceleration of the mass. Remember that acceleration is any change in velocity, not just speeding up but also slowing down.

Unlike momentum, the relationship between muzzle energy and velocity is thus not linear.

Bullet weight (in grains) X (velocity ^ 2) / 2 X 32.174 X 7000

The 7000 is to convert grains to pounds and 32.174 is the acceleration of gravity in fps. Note importantly that the velocity is squared.

The same 165g bullet above at 900fps has 296.7 foot pounds of energy.

Here is where the handloading magic starts to happen. Raise the bullet weight to 180g and obviously the PF and the muzzle energy will also rise, 162 and 323.7 ft/lbs respectively. However, now you can keep the heavier bullet, but slow it down. At 825fps, the 180g bullet still makes 148 power factor, but now the muzzle energy is only 242 ft/lbs. Keep reducing the velocity to 695 fps and you get exactly 125 PF but only 193 ft/lbs energy. That translates to 35% reduction in recoil while still meeting minimum power factor.

Now, shooting for exactly 125 PF doesn’t allow for the inevitable differences in powder drops or ambient temperature, either of which can make any given bullet run faster or slower. It will likely be the ones that the match officials chronograph that will be slower, so it’s best to build in a little margin to allow for that.

You can also reverse that logic and load up a 9mm bullet hot enough to be major PF. A 147g bullet at 1125 fps meets 165 power factor, but at the cost of 413 ft/lbs of recoil (and probably dangerously high pressures in the cartridge). You can go nuts and push a 115g bullet at 1440 fps for 165PF, but a whopping 529 ft/lbs energy, which is at the lower end of the 357 Magnum neighborhood. Plus, I’m pretty sure neither your warranty nor health insurance will cover that.

The other thing to consider is that unless you are shooting a Desert Eagle, your semiautomatic pistol is probably *powered* by recoil. Turn it down too much and there may not be enough energy left to operate it, especially if some of that energy is also lost in a loose grip.

There is a reasonable solution for that: lighter recoil springs. I had to tune the recoil spring weight in my Glock 20. Using a LoneWolf 40S&W conversion barrel, heavier bullets and lighter loads, I was able to greatly reduce recoil while meeting power factor, but before I could get all the way down, I started having stovepipe jams or sometimes, it would just fail to extract at all. The stock spring on the G20, and I think all base models, is 17 pounds. The G20 and G21 have heavier slides, as well. So the stock spring and big slide took more energy than was left after throwing a bullet downrange. I ordered a 13 pound and an 11 pound spring, each with a stainless guide rod. Turns out the 11 pound spring runs best with my softest 180g handloads, which is 4.2g Winchester 231 (or Hodgdon HP38; they are essentially the same powder from the same manufacturer, with different labeling). I can sometimes run the pistol on as low as 3.9g W231, but with the occasional jam and it’s only about 119PF.

One should be be able to determine mathematically what weight spring would be needed to run a given slide with a given ammo power. I may tackle that just for the fun of it.

 

Triggered!

The stock trigger on my Glock 19 can be fairly described as harsh. The measured pull is only about 6 pounds, but the feel is not nice, particularly compared to the G20 and G21. To me, it feels like you are bending a piece of plastic inside and it finally breaks. All three are Gen 3 pistols, with only the slightest trigger work done, replacement of the connector. The G20 and G21 have had many thousands of rounds through them, so there is probably some degree of surface polishing having thus been done.

I decided to try an aftermarket trigger. I ordered a Pyramid trigger from GlockStore.com.


I chose the Complete package for $180 because it included alternate striker springs and the firing pin block plunger, but no lightened striker. Personally, I am not sure the addition of a lightened striker is worth $70 more. Perhaps one day I will add that, but that package is roughly half the cost of the pistol.

The installation is pretty straight forward. The trigger assembly itself requires driving out the three pins for the locking block, the trigger and the trigger housing and basically dropping the replacement parts in and putting the pins back.

This kit also comes with a replacement firing pin block plunger and spring and a selection of striker springs. I opted for the lightest, a 2 pound spring. Again, installation is pretty straight forward, especially if you have ever taken the slide apart for deep cleaning, which is a good idea while it’s apart anyway. There are many resources online describing the details. It is not difficult, but there is a tricky first step to it.

Once the striker is out, there is a delicate operation to removing the spring. It would be wise to consider doing this with the striker within a plastic bag to retain the spring retainer cups. Assembly is basically in reverse order.

The black trigger with a red safety pawl just looks right to me. The trigger is available in a large variety of color combinations.

The pull weight of the trigger is not much less, 5 pounds compared to the stock 6 pounds, but the feel is a thousand times better. Much shorter pull, much sharper release and a short reset. The trigger shoe is wider and flatter than stock, so it feels like less than 5 pounds. I am looking forward to shooting it.

While I was working on the pistol anyway, I decided to address a minor irritation that is not necessarily caused by this pistol, but it did bring it to my attention. Until I got this pistol and shot it in a match, I had not noticed that frequent shooting has caused an accumulation of terminally undifferentiated keratinocytes in the outermost layer of the skin on the middle finger of my right hand.

Since it does what a callus is supposed to, protect that spot from repeated friction, I had not noticed it. However, the Glock 19 grip is smaller than the G20/21, so that spot lands a little differently. The same spot on the bottom of the G19 trigger guard hits the edge of the callus and it’s kinda uncomfortable by the end of a match. Rather than wait however long it will take for the callus to expand, I decided to smooth off the trigger guard.

Although the mold seam is clearly visible here, that’s not what causes the discomfort but rather the nearer edge of the trigger guard.

I used primarily 1 inch wide 150 grit sanding strips to reform that edge, then smoothed and polished it with finer strips and sanding pads.

I haven’t fired it yet, but it certainly feels better in the hand.

Lead Is Bad, M’k….

 

At some point, whether we think we want it or not, lead ammo will likely be banned, probably indirectly. The Yankee Marshal had a couple of videos that make a pretty good point about the firearms industry, which includes consumers of the firearms industry, self-regulating away from lead to let us drive that agenda rather than being driven by that agenda.

There are quite a few lead-free options in defense ammo, mostly made of copper. Copper prices have come down a bit, but there still isn’t any range ammo for high volume competitors.

There is no arguing that it is really hard to beat the cost of poly coated or copper plated lead ammo. It’s cheap. 1000 rounds of plated or poly coated ammo can be less than $100, sometimes much less than $100 bucks.

In following some information alluded to in TYM’s videos, I found Polycase Ammo’s RNP ammo. The RNP projectile is made of a polymer mixed with copper powder to add weight. It doesn’t add a LOT of weight because the similar 9mm and 40 S&W Ruger ARX bullets, manufactured for Ruger by Polycase, that I found at Cabelas are only 65 grains and 97 grains, respectively. Even the 97 grain 40S&W is light enough that I could not pull the bullet with an inertia bullet puller. I whacked it pretty hard and the bullet didn’t budge. Perhaps I will have better luck with a collet puller.

I did remove them from their cases with considerable alacrity using Glock pistols. Th 40S&W ARX out of the G20/Lonewolf is fast, averaging 1479 fps through my chronograph the 9mm (G19) trucks along at 1583 fps. The light weight bullets have to haul butt to generate enough foot-pounds to work a pistol slide. The 9mm ARX comes in plenty hot to cycle the pistol, but at 102PF, it is too light for non-BUG IDPA sanctioned competition. The 40S&W ARX does. It makes 143 power factor right out of the box. The RNP is expected to run about 133.

Both ARX rounds tore pretty impressive ruts in the ground and compared to the low velocity RNFP I usually put through the chronograph, I got splattered with ejecta.

In the interest of at least checking it out, I ordered 500 rounds of Polycase RNP in 40 S&W from LAX Ammo, in addition to the Ruger ARX at Cabelas. The RNP from LAX arrived today.

Concurrent with my order, I contacted Polycase Ammo to ask about handloadable projectiles for sale and, while the reply was basically, “Please wait”, the guy was very nice and revealed that I am not the only person pressing them for projectiles:

I have a bunch of friends that are competition shooters and they are all wanting to know when the reload portion of our ammunition will be available and I have to tell them all to be patient.

That’s fine for them, but I want it NOOOOOOWWWWWW!

In any case, I expect to shoot the RNP in this Wednesday’s match at Defender Outdoors…

Too Busy Shootin’ To Blog

Ok, well, maybe that isn’t completely the case. The ‘too busy’ part is, though.

Since my last bit about cutting some weight off the RIA 2011, the new 2017 IPDA Rulebook has been published. For the most part, the new rules are an improvement. At the very least, there are substantially *fewer* of them; the 2017 rulebook is 18 pages shorter. More on that later, but the maximum weight limitation of 43 ounces still applies, but the prohibition of an extended dust cover disappeared without a trace.

This is, of course, good news and bad news. For this pistol to comply with CDP rules, I still need to remove a total of 4.3 ounces, plus a bit of margin. It’s just that now I don’t have to hack the front of an otherwise useful mounting rail off as well. On the other hand, that *was* going to be some of the weight to trim.

One of the most important changes are in the dimensions of allowed firearms, particularly CCP and BUG. The CCP division box is now an inch shorter in length, but 5/8″ taller and barrels are allowed to be 4-3/8″ or less, which is 0.275 inches longer than before. Similarly, the BUG division box is 3/4″ shorter but 7/8″ taller and barrels are now only allowed to be 3-1/2″ or less.

Guess who’s Kahr CW40, a veteran of several BUG matches and which complies in every other way, has a barrel that is suddenly 0.1″ too long?

I had some 1/4″ aluminum plate cut to some specific dimensions to form IPDA boxes that can be disassembled and stowed in a range bag.

The box on the left is for SSP, ESP and CDP divisions. The width of the pieces establishes the 1-5/8″ depth of the box. With the pistol inside the frame, slide a straight edge across the top of the frame and if it clears the pistol, then the pistol complies.

The CCP and BUG boxes share the same 1-3/8″ depth, with different length and width dimensions. The slots in those pieces allows one set to be assembled into either size. As I ordered two sets of either size parts to be cut, there are enough pieces to make all three boxes at the same time.

My hope is to offer these for sale, but there is a caveat to their design that I need to address before they could be considered as a valid measurement device. When assembled, the fit of the slots allows a little movement of the pieces. The net effect is that rather than a rectangle, with 90 degree corners, it can become a parallelogram, basically a skewed rectangle. Since a pistol needs to fit inside of a rectangular box that is of a specific length, the bit of slop in the fit can let a pistol that is as much as 1/4″ too long to fit by allowing the muzzle to push the top left corner to the left and the grip to push the bottom right corner to the right.

The obvious fix is to clamp the parts square and weld the corners into that position. Of course, there goes being able to disassemble it and stow it in a range bag. I have some other thoughts about stabilizing the assembly, something like this clamp, but sized and applied to take advantage of extra material on the outside corners.

Unlike rendering a my BUG gun ineligible to compete, one very welcome aspect of the new rules is the addition of fault lines at cover points. From a tactical standpoint, a moving cover line as the shooter advances to address each target in tactical priority keeps the shooter more safely behind cover. On the other hand, while it seems like it would be objective, calling cover violations required a lot more active attention to the shooter’s body position and it often became a very subjective discussion about whether or not cover had been violated. As a shooter, now you can check the fault line once as you set and pay all your attention to shooting unless you need to move. As a Safety Officer, you can check the shooter’s position once and pay all your attention to other scoring and safety issues unless the shooter needs to move again. Better for everyone.

Somewhat controversial is the increase of the points down value from a half second to a full second. Ones are still less costly to your score than threes, which are less costly than misses, but all are twice as costly as they used to be. The emphasis is on accuracy over speed.

Related to the scoring cost is the new two-zone head section of the standard target. No longer is the entire head area zero down.

 

 

 

Antenna Tweakage

I had some time one afternoon to use the RigExpert analyzer to tune the ol’ 6BTV.

For tuning a trap vertical, I can’t imagine it being much easier. Between the analyzer and the DX Engineering tilt base, it only took about an hour.

The procedure is simple. Hook the RigExpert to the antenna, scan the band you want to tune, tilt the antenna down, adjust the length of the space between traps, repeat.

You do the highest frequencies first as that is the bottom of the antenna and will affect the lower frequencies higher up the antenna.

This antenna is pretty broad banded in all the small bands, which isn’t really that hard to do. It does make tuning a matter of moving the small peak to a more desirable spot, in my case, the lower ends of the band where JT65 lives. The charts are kinda dull for 10, 15, 20, 30 and 40 meters.




The nature of lower frequencies combined with an extra wide 80 meter band mean that its pretty hard to make an antenna that covers the entire band. This one is no different.

Since the bandpass is so peaky, I chose to try for the middle of the band.

Scanned the whole range the antenna can do:

Now, after all this, I need to get on the air some more…

Weight Reduction Plan

I had a little time on Sunday some more serious measuring of the RIA 45. In short, this pistol weighs 47.3 ounces and I need it to be under 43 ounces to be IDPA legal.

One bit of good news right off. The included full length stainless steel guide rod weighs 1.6 ounces. The standard guide rod from my Colt 1991A1 weighs 0.4 ounces. There’s 1.2 ounces essentially for free. The RIA with the standard guide rod and otherwise in IDPA equipment check condition came in at 46.1 ounces. 47.3 – 1.2 = 46.1! I love it when math works.

Not all the news is rosy. I thought the mainspring housing on the RIA pistol was steel and I had hoped to save a fairly significant bit of weight with a plastic part I had removed from the Colt. Unfortunately, it already has a plastic mainspring housing, so I will have to look elsewhere for 3.1+ ounces to trim.

The next big place to lose some material is under the grip panels. The frame is cast chromoly steel, 4140 to be exact, with 100 percent coverage under the grip panels.

20161030_152456

This is a strong steel and I believe I can safely skeletonize this area of the frame without compromising the strength of the pistol.

20161030_161923

This is very preliminary scribbling. The cross bar is an optional piece that I may elect to leave. I won’t know exactly how much weight this will remove until it is cut, but back of a napkin calculations look promising.

4140 weighs 0.284 lbs per cubic inch. The slabs to cut out are about 1 x 3 inches and the material is (from memory) about 1/10 inch thick. So…

2 cuts x 1 x 3 x 0.1 cubic inches x 0.284 lbs per cubic inch) x 16 oz / lb

2 x 0.3 x 0.284 x 16 = 2.7 oz

Because of it’s complex shape, calculating the weight of the cut off end of the dust cover is not quite as easy, but if it is 1 oz or more, I’m done.

If my math is questionable and if after all of the above the pistol is still overweight, I can carve on the magazine well funnel. This part is 2.7 ounces by itself, though discarding it would not look right and might draw undesired attention at the equipment check stage of a major match. However, the funnel is far beefier than it needs to be and I think I could carve enough out of it to help and it would probably look better. It has some rough and bulky edges. Some blending would look better.

When all this is done, I should refinish the pistol or at least the frame and magwell funnel.

 

Blade-Tech Lone Star IDPA Championship

On October 22nd, I attended the Lone Star IDPA Championship in Cresson, TX. I was #11 out of 25 ESP Marksman shooters. Not enough for any award, but still a personal best. I was #135 out of 182 shooters overall.

I didn’t have any meltdowns, though I did have one stage that could almost count as a meltdown. Stage 8 started with dropping a steel pepper popper that triggered a swinger with two targets. I was just not getting the rounds onto the swinger targets and once I felt I had, I should have either dumped a few more rounds and reloaded or done a tactical reload before leaving cover. There were four targets in the open on the way to the next cover position and I ran out after the second. I had no ammo to engage the third target and it was specifically not allowed a makeup because it would not have been safe to do so. So, 10 down, FTN, FTE. At the end, I had a single 1 on one swinger and about five 1’s and 3’s on the other and all other targets on the stage were 0’s.

My long game was in pretty good form. The Tuesday before, I spent 250 rounds at the range, almost all of it at 12 yards. It appears to have helped quite a bit.

Scoring-wise, half the stages were 7 down or better and the worst (not even Stage 8 described above) was 21 down. I had three procedural errors, three FTNs and that one FTE for the entire match.

Generally, I don’t like being the first shooter on a stage because I don’t yet have the full confidence of experience and I like seeing how a couple of other people, particularly the Expert and Master class shooters, approach a given stage. Well, with 12 stages and 12 shooters on a squad, everyone will be first shooter once. My turn came up on Stage 4.

Stage 4 was modeled after a skate park, with all targets only visible from on the  ramps. The plan came together pretty well, and I was happy to see more experienced shooters adopt essentially the same plan. From the left ramp, two low targets and two distant targets get two rounds each. Move to the center ramp, one low target gets two rounds plus one round dumped, reload, distant targets visible to the right get two rounds each, move to right ramp, one low target gets two rounds. Of course, Josh from the video above ran it in 13.11 seconds and it took me 20.46 🙂

Stage 1 was thrown out; I think someone charged that not all squads were given the same instructions. When the preliminary scores were posted, Stage 1 was still included and I placed at #11 in my class and division. When the final scores were posted, with Stage 1 removed, I still placed at #11, just with a lower score.

Even if there are no awards coming, one should always hang around for the prize drawings. IDPA cannot award prizes for match position beyond trophies, but match organizers can give away door prizes and run raffles. There are usually at least a couple or three pistols on the prize table and often match sponsors will donate heavily. At this event, there was a long table covered with Blade-Tech products and gift certificates. I got none of it. There was a raffle for a very nice Springfield Armory stainless 1911. Winning ticket drawn: 2630. Tickets I held 2632-2634.

It was still a fun match and I was on a really good squad of mostly Cross Timbers members.

 

A Diet and A Nose Job

What do you do when you have a pistol that would be awesome to shoot in IDPA but it’s not IDPA legal? Most people would trade it off for one that is legal. You probably know where this is going, then.

The Rock Island Armory TAC Ultra Full Size High Cap 45 does not meet IDPA requirements on two points. All divisions specify a maximum weight of 43 ounces and the RIA is a smidgen heavy, exactly 10% over, at 47.3 oz.

20161025_191803

Also, it has a full length dust cover but the rules limit the dust cover to 3-1/4 inches, as measured from the back of the slide lock release lever pin.

20161025_191616

The first objection I would address is rules 8.2.2.1.7 and 8.2.3.1.7, which both say that a pistol that violates certain rules in ESP or CDP (and the specific example given is of a dust cover that exceeds 3-1/4 inches) will be allowed if they are otherwise SSP legal. Unfortunately, handguns permitted for use in SSP must:

8.2.1.1.3 Be double action, double action only, or striker fired.

The RIA is single action. Single action is allowed in ESP and CDP, but the dustcover exception only applies if the pistol is otherwise SSP legal.

The first obvious place to address both problems would be to lop off an inch or so of the dust cover and that is in my skill set. However, that piece of metal is not likely to weigh enough by itself.

The pistol has a heavy duty full length stainless steel guide rod that weighs 1.6 ounces. I can’t eliminate it, but a 1911 that *requires* a full length guide rod to work is actually broken, so I imagine I can replace it with a standard GI guide rod, which itself can be lightened somewhat. The actual weight savings would have to be determined later.

The mainspring housing is steel. I have the stock mainspring housing from my Colt 1991-A1, which happens to be made of plastic. I only changed it because I wanted a metal one. As of this writing, I don’t know the actual weight of either unit, but the plastic is significantly lighter than the steel.

After that comes modifying existing parts. The low hanging fruit there would be to drill or cut away some of the frame under the grips.

The factory magwell funnel weighs 2.6 ounces by itself. However, the frame is cut specifically for it, so just removing it might function just fine, but it will definitely look like something is missing. At this point, I don’t know how much fitting an aluminum magwell funnel for another pistol might take. Also, though I have not measured the width of the magwell funnel, it occurs to me that it might be too wide anyway and may require thinning to meet the physical dimension limitations, particularly the 1-5/8 inch maximum width.

Note that I am trying to stay completely away from the moving parts of the pistol. Lightening the slide means a change in the spring weight and a corresponding adjustment in ammo. Most any other part replaced will pretty much have to be quite dollary titanium replacement parts. Very quickly, one could spent the balance required to upgrade to an IDPA legal pistol.

If after these steps, the pistol fits in the IDPA box and weighs in at about 42.5 ounces to allow for possibly sloppy scales at the equipment check, I should be able to use this pistol in either the ESP or CDP divisions.